首页> 外文OA文献 >Priority-Aware Private Matching Schemes for Proximity-Based Mobile Social Networks
【2h】

Priority-Aware Private Matching Schemes for Proximity-Based Mobile Social Networks

机译:基于邻近移动的优先级识别私有匹配方案   社交网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rapid developments of mobile devices and online social networks haveresulted in increasing attention to Mobile Social Networking (MSN). Theexplosive growth of mobile-connected and location-aware devices makes itpossible and meaningful to do the Proximity-based Mobile Social Networks(PMSNs). Users can discover and make new social interactions easily withphysical-proximate mobile users through WiFi/Bluetooth interfaces embedded intheir smartphones. However, users enjoy these conveniences at the cost of theirgrowing privacy concerns. To address this problem, we propose a suit ofpriority-aware private matching schemes to privately match the similarity withpotential friends in the vicinity. Unlike most existing work, our proposedpriority-aware matching scheme (P-match) achieves the privacy goal by combiningthe commutative encryption function and the Tanimoto similarity coefficientwhich considers both the number of common attributes between users as well asthe corresponding priorities on each common attribute. Further, based on thenewly constructed similarity function which takes the ratio of attributesmatched over all the input set into consideration, we design an enhancedversion to deal with some potential attacks such as unlimitedly inputting theattribute set on either the initiator side or the responder side, etc. Finally,our proposed E-match avoids the heavy cryptographic operations and improves thesystem performance significantly by employing a novel use of the Bloom filter.The security and communication/computation overhead of our schemes arethoroughly analyzed and evaluated via detailed simulations and implementation.
机译:移动设备和在线社交网络的快速发展导致人们越来越关注移动社交网络(MSN)。移动连接和位置感知设备的爆炸性增长使得进行基于邻近的移动社交网络(PMSN)成为可能和有意义。用户可以通过智能手机中嵌入的WiFi /蓝牙接口,轻松地与物理上接近的移动用户发现并进行新的社交互动。但是,用户以日益增长的隐私担忧为代价享受这些便利。为了解决这个问题,我们提出了一套优先级感知的私人匹配方案,以私下匹配与附近潜在朋友的相似性。与大多数现有工作不同,我们提出的优先级感知匹配方案(P-match)通过将可交换加密函数和Tanimoto相似系数相结合来实现隐私目标,后者考虑了用户之间的公共属性数量以及每个公共属性上的相应优先级。此外,基于新构造的相似度函数,其中考虑了所有输入集上匹配的属性的比率,我们设计了一个增强版本以处理某些潜在的攻击,例如在发起方或响应方无限输入属性集等。最后,我们提出的电子匹配通过使用布隆过滤器的新颖用法避免了繁重的密码运算,并显着提高了系统性能。通过详细的仿真和实现,深入分析和评估了我们方案的安全性和通信/计算开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号